If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=8x+35
We move all terms to the left:
x^2-(8x+35)=0
We get rid of parentheses
x^2-8x-35=0
a = 1; b = -8; c = -35;
Δ = b2-4ac
Δ = -82-4·1·(-35)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{51}}{2*1}=\frac{8-2\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{51}}{2*1}=\frac{8+2\sqrt{51}}{2} $
| 2i-17=43 | | −5(4x−3)−x+5=-190 | | 13x+45+(19x+3)=180 | | 50x^2+8=0 | | |4x−42|=−10x. | | 1/12x=13 | | 21(z)+4-16=-6(z)+8 | | x/26=15 | | 1/11y-6=-14 | | -9(2+3x)-11x=4x-11(x-2) | | 2g+(-12)+9g=1-g | | 3x(+10-4)=21 | | 7p-3=3p+13 | | 1/9y-4=-13 | | -10+6x=4(5+2x)+3x | | y/8=32 | | 2g+-12+9g=1-1g | | 58−3x=13 | | 400=8(1+7n) | | 22=7=3x | | 1/4y+2=-14 | | -8=-5/11x | | 5y=420 | | -3=7-4x/3 | | 8(w-4)=-9w+2 | | -2=-5/3x | | 23-6=13x | | 2^(x)+2^(x+3)=72 | | 5x/8-6x=12 | | 20+y=60 | | 6+10m=56 | | m+8=-14 |